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ABSTRACT 

This report presents the flexibility matrix method of structural anatlysie in 
detail. The method is extended to permit imalysis of complex systems which con- 
sist of statically indeterminate component structures, connected to each other so 

that some of the connecting forces are redundant. 

DQftal program 64DO17 implements the theory pmsented in thia report and . 

can be used for analysis of any complex stmcture. 
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I SECTION I - INTRODUCTION 

The structures of aerospace vehicles, of which the Saturn is a prime example, 
are often large and usually statically indeterminate. Those structures which can 
be idealized by an assemblage of oile or two dimensional elements may be d y s e d  
by either the flexibility matrix method o r  the stiffness matrix method. Because of 
the large number of elements and the relatively small number of redundant forces 
in vehicles of the Saturn type, the flexibility matrix method is preferre .  Also, 
the numerical problem of inverting large matrices is eliminated. 

This report develops a method of obtaining the flexibility matrix of such 
structures by elastically couplhg redundant component structures into a complex 
structure. Although this concept is not novel('* 2), it is felt that the detailed ideas 
which make this method practical have not been sufficiently explained. Therefore, 
the method is rederived and particular attention is given to definitive statements 
regarding the nature and method of calculating the internal force influence matrices 
which are obtainable from equilibrium conditions, and which transform external 
unit applied loads or redundants into forces on the component stmctures or into 
internal forces on their structural elements. This includes axis transformation 
for elements in three dimensional space and an organized method that categorizes 
the various force innuences, so that the force influence matrices that are the 
vtcoupling*v matrices are  easily understandable and calculable. This latter method 
is given in Section III, Watically Indeterminate Coupling of Redundant Components 
of a Complex Structure. '1 The practical application of the method makes the use of 
digital computers mandatory to perform the various matrix operations. The input 
data is in the form of the force innuence matrices and flexibility matrices of stand- 
ard structural elements. Novel idealizations are often possible which yield flexi- 
bility matrices that allow superior representations of the compatibility or equi- 
librium conditions where structure eler ents join. Therefore, the method is set 

up in such a way that any new alemest force and flexibility matrices can be used 
as they are calculated, without having to modify the basic digital program. 

are derived, using the equality of internal and external work of deformation. 
The redundant - internal force - and deflection influence coefficient matrices 

2 



A procedure suggests itself which will permit the build up of the matrices of 
extremely complex structures from solutions of statically indeterminate struct- 
ural subdivisions of reasonable complexity, requiring only the inversion of small 
matrices and various elemmtary matrix operations. The matrices involved are 

flexibility matrices of the simplest structural elements comprising the components, 
and internal force influence matrices. 

The method is implemented by Digital Program No. 64 D 017. Instructions 
for its use wi l l  be given in a supplementary report. However, a sample problem is 
given in this report which illustrates the application of the theory. 
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SECTION II - FLEXIBILITY OF STRUCTURAL ELEMENTS 

A. THE BEAM ELEMENT FLEXIBILITY MATRIX 

The cantilevered beam element with two axes of cross-sectional symmetry 
is assumed to be the smallest basic element of that part of a structural network 
consisting of beams. The static deflection response of such an element to unit 
forces applied at its free end is expressed by its flexibility matrix, which is the 

matrix of coefficients 
the deflections: 

of the generalized forces in the expression of 

[ ~ l m ]  t F m }  = {Am} 

The calculation of the elements of [ Yam ] is based both on the Principle 
of Virtual Work and the assumption that the internal stresses and &rains are 

linearly dependent, on the basis of the engineering beam theory. 

t Fw 

--T Fv v - V 
U 

Figure A-1. Beam - Rod Element 
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Figure A-1 shows a beam element @ - @ fixed at its origin and free 
at point @ . The coordinate system coincides with the axes of symmetrg. The 
six degrees of freedom of point @ correeponds to the six components of {Fm} 
showninthefigure. Thus 

= 

and 

A V 

A& 'i 
where A = deflections 

A' = rotations 
F = forces 
F' = moments 

The cross-section properties at any point dong the'lengtb of the beam 
are: 

effective shear area loaded by Fu 
effective axial area loaded by Fv 
effective shear area loaded by Fw 
moment of inertia about the u axis 
torsional moment of inertia about the v d 
moment of faertia about the w rrxie 



The non-zero elements of [ YQm ] are: 

1 'L+ -> ds 
'k E#, GA 

2 

U 

2 
+- I d s  k EIu GA, 

L 

sds 

- 
- - yuw 

0 

All other elements are zero. 
Since practicality is of prime importance, it is recommended that the 

indicated integrations be performed by assuming that the elastic properties vary 
linearly between each pair of given numbers of point on each beam segment. The 
expanded form of Eq. (A. 1) is thus 
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B. THE ROD ELEMENT FLEXIBILITY MATRM 

A rod has only one degree of freedom, that of elongation of one end with 

respect to the other. If the beam element of Figure (A-1) is considered with 

only that degree of freedom, i. e. , & , then the flegibiIity of the rod is ym. 

Thus 

Y W F v =  Av 

where ds 

However, in the case of interaction of rods and shear panels, it is important 
to include the deflection of the rod due to unit value of an applied constant shear flow 
(Figure A-2). 

Figure A-2. Rod with Constant Shear Flow 

The value of the deflection due to unit shear flow, where the subscript v' 
applies to the shear flow, is 

f L  - 
yw" -4 sds EAV 
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Maxwell's Law of Reciprocity requires the existence of the term yvav ywa. 
This is a generalized deformation due to the application of a unit end load, or  other- 
wise interpreted, it is the work done by the unit shear flow as it displaces through 
deformations caused by the unit end load. 

The corresponding diagonal term, yvtlt, is obtained by considering th8 
applied load to be a unit shear flow and calculating the virtual work caused by that 

load 
Then 

This is the work done by the unit shear flow as it moves through the deform- 
ation caused by it. 

Thus 

where 
i = u, v o r w  

C. THE SHEAR PANEL FLEXIBILITY MATRM 

Some two dimensional elements in the form of skin panels o r  beam webs can 
be assumed to carry only pure constant shear flow (Figure A-3). 

=. 
Figure A-3. Shear Panel 
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The shearing deformatipn for a unit shear flow is given by: 

ab 
- G t  

- - 

If the panel has a rhomboid shape (Figure A-4), the skewed coordinates demand 
adjustment in this value according to the theory of elasticity. 

Figure A-4. Rhomboid Shear Panel 

The flexibility is thereby increased and the value of the shearing deformation is then 

- G t  (1 + E cot2 9) ab 
L - 

where E = Young'smodulus 
. G = shearmodulus 

iP = angle of midline with respect to the side of the panel 

The complementary strain energy is thus 

D. FLEXIBILITY MATRICES O F  ELEMENTS OF OTHER SHAPES 

The flexibilities of rod and beam elements with various simple variations of 
cross section properties are given in Reference 3. The trapezoidal quadrilateral 
shear panel flexibilities are usually approximated by assuming equilibrium to be 
satisfied by suitably adjusted uniform shear flows on the edges. 

Some of these approximations also appear in Reference 3. However, if a 

trapezoid is swept, similar to a rhomboid shape shear panel, the effect of this 
sweep must be incorporated by increasing the flexibilities, through the factor C,  

involving E, G and the average angle of sweep a: 

G 2  c = ( 1 + 4 Z C O t  @) 
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SECTION JII - STATICALLY INDETERMINATE COUPLING OF REDUNDANT 
COMPONENTS OF A COMPLEX STRUCTURE 

In previous consideration of the analysis of statically indeterminate structures 
(3) internal forces were calculated which were caused by externally applied forces 
and redundants, respectively, on the cut (and thus statically determinate) structure. 
The concepts used are extended to the calculation of influence coefficients of complex 
structures consisting of statically indeterminate component structures, coupled so 

that redundant forces exist at the boundaries between the component structures. 

A. ANALYSIS OF COMPONENT STRUCTURES 

1. Basic Concepts for Solution of Component Structures 

The structure is assumed to consist of interconnected elements in which 
the internal forces are statically determinate when sufficient cuts are made to remove 
redundancies (Figure A-5). Their individual idealizations permit the calculation of 
flexibility influence coefficients. These influence coefficients are  used to calculate 
the deformations of the elements caused by applied loads. Linear structural behavior 
is assumed, permitting application of the superposition principle. 

Figure A-5. Removal of Redundancies Through the Use of Cuts 

10 



Each element admits only a limited number of forces and corresponding 
kinematic motions. Examples are the slape and deflection of one end of a canti- 
lever with respect to the k e d  ead caused by unit moments and shears. The deform- 
ation of the elements, with Fespect to their individual datums, are easily calculated 
by multiplying the matrices of the influence coefficients [ y ]  of each of the elements 
by the force vector representbg the forces { F ] sustained by it. These forces are 

due to external loads acting 011 the element or the internal forces due to load transfer 
between elements in the cat structure. The latter (e.&, shears and beprding momeats 
in a beam), can be determined of course from equations of static equilibrium of the 
structure that has bear cut at all points of redundancy so that these internal forces 
are expressible in terms of the applied and redundant forces. The contributions to 
the internal forces from these two Bournes are expressed separately by the matrices 

1. The elements [CY,] are the internal forces at m dueto a * 

unit load applied at h. Thus, When [ -1 is multiplied by the external fomes [ Ph] 
the resulting values are the internal forces { Fd] at intercoslnection points or load- 
ingpointsm. Thus, 

I 

Janci [ e  c a r  mh mq 

Similarly, there are the internal forces { Fmq] caused by the reduudants [X  1. 
The columns of the matrix [ j9 J are the internal forces rrt m due to unit values mq 
of the redundants [ X ] at q. Therefore, 

Q 

Q 

The total internal fome is 

or 

A propped cantilever -,loaded at two points, is shown in Figure 
A-6. The beam is broken up into two elements and a cut is made between the 
beam and the flexible support. The internal shears v1 and v2, the moment mz, and 
the support force p are the forces transformed through % and B, shown below. 

11 



Thus 

f-1- 

v2 

Figure A-6. Internal Forces in a Redundant Beam 

Method6 for finding [Xd , and thus [ Fm], will  now be obtained by 
considering the equality of the internal and external work of the S t ~ ~ t ~ r a t  deform- 
ations. 

I 

2. Internalwork 
The internal work of the structure is obtained by summing the contrib- 

utions of each element to that work. Only the work of the internal and external 
forces in and on an element relative to the element datum wi l l  be used to find the 

12 
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internal work. Actually, the absolute displacements, which are the sum of the 
datum and the relative displacemeats, could be used to find the work but the 

contribution of rigid body motion is zem because the complete force system on 
each element, including the reactions at its datum, is in equilibrium and the work 
rquired for a rigid 
equal to zero. 

displacement of a system of forces in e q u i l l b m  is 

The deflections of an element relative to its datum are 

It is to be understood that, physically, k and m may represent the same or 
different degrees of freedom; A can be a deflection or a rotation type daformation 
and m can be a linear or a moment type force. 

work Wel, the product of these forces and the deflectione, is give31 

The structure is assumed to behave lineariy and therefore the internal 

m 

Substituting Eqs. (A. 11) and (A. 12) into (A. 13) 

rn 

The totaI internal work in the 6tructure is the sum of the work cantrib- 

utions of the elements: 
n 

J 1-1 

where 
n = numberofelements 

13 



Now { rk l  will be common to all expressions of internal work for 
xaJ 

all structural e l e m i t s  such as Eq. (A. 14), provided [ o ! ]  and [43mq] are 
organized to have columns corresponding to every Ph and X sustained by the 
structure, mea if some of these forces have zero influence. The sum of the 

and [yA,] 80 that all internal forces in the component structure and their flexi- 
billties are represented. 

Q 

internal works, Eq. (A. 15), is obtained by providing enough rows in [ mQ 

The deflection6 of a st~cture consisting of two elements would be 

or 

I c 2 L J 

~ o t e  that the elements in the it' set of rows of [ ad] must therefore 
be the values of the internal forces in the ith element due to unit values of ea;ternSl 

loads { Ph] applied anywhere on the cut, statically determinate structwe. The 
elements in the ith set of rows of [Bmq] are  similarly the internal forces in the 
ith elemeat due to unit &lues of the redundant6 {X 1. Q 

The internal work is one half the product of the internal forces and the 
deflections. This work in two dements is: 

weli + wel i+l 

+ = '[F T Am 
mi i 

1 T 
i+l F Am mi+l 

14 

-- . 



Thus, for two elements, 

T I 

I L 

(A.18) . 

in which various brackets and braces of the notation in (A. 3.8) have been deleted for 
clarity. Each of the letter symbols now stands for the correepondiag matrix. 

Geaedizing th€s to any number of elements, the total internal work is: 

which has the same form as Eq. (A. 14), but gives the generalized expression of 
internal work for the whole structure through the foregoing definitions of [ cyrnh 3 
and 3 and by designathg [ ylm 1 to be a square, symmetrical matrix whose 
elements are uncoupled flexibiliw matrices of the elements along the diagosal, B u c h  
88 that in Eq.  (A. 19) above. 

3. External Work 

The external work is expressed by summing the work of the external 
forces as they move through their displacements. It wiI l  be helpdul to use the 
trick of WMing zero'w in the derivation of the expression of the equaliiy of internal 

and external work, so that terms involvfng the reclunhts in the accompanyhg matric 

equations may be understood, 

15 



The concept of an external force can be generalized to include the 
redundant8 which are applied to each side of a kut"  face, equal and opposite to 
each other. Compatibility of the cut faces requires that each side of the cut face 
move through the 8ame absolute displacement. The external work of the redundant8 
is therefore equal to zero because they are each equal and opposite forces, Fepresemt- 
ing a zero vector, moving through some displacement with respect to an absolute 
datum. Addition of the l%xtemal work" of the redundants to the total external work 
is t h e d o r e  adding zero. 

also move because of the influence of the loads on them and the forcing of compati- 
bility by the redundants. Then if the structure is cut 80 that all forces within it are 
statically determinate with respect to acternally applied forces and the redundant4 

the resulting deflections are expressed through means of a f l d 3 l i t y  matrix [ c 1 
referred to some common absolute datum for the structure. It is desired to obtain 
the displacements at the externally loaded pohts with respect to this datum. They 
are calculated from au equation, such as 

The cut points and others which are loaded with external known forces 

in which [A ] are the deflections of the externally loaded points, g, and [ c 3 is 
the flexibility matrix of the cut, statically determinate structure. The subscripts 
g and h pertain to applied loads or corresponding degrees of freedom at their points 
of application, and p and q pertain to redundants or the corresponding degrees of 
freedom at their points of application. ~hsls the partitions c CCJ are 
the g deformaons due to unit values of forcee Ph and X 

g 

and cgq f3h 
respectively. 

Q' 
Consider the diqhcemente { Ap } of one of the two fhces of each cut. 

(a) 
They can be similarly expressed 88: 

for the faces (a). For the faces (b) they would be: 
r -  

. .  
L J  

16 



The relative defom&iarm of (a) and @) are the differawes. Thue 

The relative displacements of the cut faces can be expressed, a8 was h e  for 
the load point displacemeplts, l l l ~  

in which 

and 

which R ~ O W S  the use of the primed and double primed matrices of Eqs. (a) and @). 

The total work of the forces is given by the sum of the pmducts of the 
forces and their disphumneplts. Remembering that E4 1 is defined aa the relative 
displacement vector of the cut b e e ,   the^ the tatal extend work ( if f $ 3  wem not 
eqUalt0zem)is 

or 

Substituting Eq. (A 21) and (A, 22) in Eq. .- (A. 23) gives 

17 



1. 

there results, a8 shown in AppeaaiX A 

A means of calculating [ c 1 has thus beerr found. The value8 of the 
redundants and the deformations of the compatible etructure remain to be foumd. 
The internal forces can be obtained from Eq. (A. 11) once the redundants are known. 

It can be seen from Eq. (A. 21) that if all the value8 of { X 1 for every 
separate application of a unit external load at point h were known, then the values 
of {A 1 for any such unit load would form, by definition, one column of the eactemd 
flexibility influence coefficicmt matrix, i. e., that the resulting defLectiar8 are caused 
by a unit force applied to fh structure at h, and in which compatibq is e0fomed 
by corresponding vduee of {X 1. 

(A. 22) are set equal to m, I. e., for COmprrtiMlity of the cut& 

Q 

g 

Q 
Tofindtbeeevaluerof[Xq), therelativedefoma13am{Ap) inEq. ~ 

Then 

18 



&rbstiMfne thia result in Eq. (A. Zl), give6 the deflectiam. of poinb 

Then 

Let 



which defines [fd 3 as the internal force influence matrix of the uncut redundant 
Stntc tuw.  

The deflections are 

It should be kept in mind that for certain structures consisting of 
many e~ememts joining in few points it may be advautageuw to OW [ y 
by inverting the stifhe88 mat& of the structure, which in 8uuh case8 

be mom easily obtaidde (Referemcee 4 and 5). 

3 sh 
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B. ANALYSIS OF A STRUCTURAL COMPLEX 

The method of solving statically indeterminate stmctums has beem 
summarized PreVioUS~ in E ~ s .  (A.-30) k u g h  (A.32). 2% ~ t h o d  c ~ u l  IY~W 

be extended to cover a class of structures that consist of statically indeterplhmte 
modules interconnected in a statically indeterminate way. It ie proposed that 
through such a concept aqy extremely large structural complex can be solved 
by a n a l y z e  the properties of component stxuctures, chosen at ccmvenbll~~, 
which may themsehres be s t a e  indeterminate, and coupling tbm thratgh 
the satisfaction of equilibrium and compatibility conditions at tbir pinta af 
physical WerCollIlection. The generalized relationships which lead to tbe 
expression of tb interconnecting matrices will  be developed, and a~ will be 
seen, the concepts that were used to develbp Eqs. (A.30) thmugh (A. 32) are 
also applicable here. Furthermore, although this may be an extreme 
generalization, it can be seen that the properties of the statically irsdeterminate 
component structures may themselves have been obtained from a further break- 
down into ststically indeterminate sub-modules and a subsequent sy&b&Gof the 
component structure throughtbe compatible interconn8ctimofthese sub-modnles. 
Thiscanbecontinuedadinffnfbum, c o n c e g t u a l l y p ~ c i q g t h e p ~ - w i t h i n 4 -  
picture-within-a-picture~ effect. 

The method wi l l  be developed assuming statically indeterminate com- 

ponent structures, intercaurected in a statically indeterminate manner. It wSll 
subsequently be shownwhatthe specialized term8 of the various matriwm are 
for structures that have comjmnent etructures and interconnectione that are 
statically determinate. 

1. Forces on the Component structuFe 

The above title suggests that the forces on compomt structures might 
have different sources. This is indeed true. The correct generation of the 
corresponding force influence matrices is dependent upon the proper classification 

(s) of the force samces and their effects. They are so-called %xtractorV9 matrices, 

because timy extract tbe local force from the generalized lnnrlirrpnGii3i. ~bem 

__ 

matrices generatedfrom tbs equations of static equilibrium, eomewhat 

21 



similarly to the calculation of and pmq for the elements of the component 
structure. It ie the we of these force influence matrices that distinguishes this 
approach from that of Argyris, @) in which the internal element forces af the 
connected component structure are used to obtain the work in tbe campanents of 
the complex stru&m. The use of the new statically obtainable force influence 
matrices is dmimsly much simpler to understand aa well aa to actually implsment. 

A datum ie claoeen for each component structure so that the reactbm 
there are statically determinate. At these points, each component structure ie 
joined to another om. All otber points on the component represent points wberpr 
arbitrary loads can be dfiactlg Mroduced. Quantities at these pointe are 
designated by tbe subscript gi,  where^ g designates the degree of freedGm at 
a point, e.g., a rotation or deflection, and i stands for the inferior nature af 
the point, it being within the batadary of the component or on the bamdary, 
but not connect& to other s t ~ c t u r e s  there. 2% forces which correspond to 
the senses of these degrees of freedom are subscripted with hi. For example, 
the numerical ciesigmtion in an actual analysis of the deformation gi, which 
may be a rotation, would be the 13me .aa that of the moment hi if it were applied 
in the same location. 

F m  A-7. TJrpical Inad PO- gi, hi on Compo& Structure 

The points which represent the statically determinate connection of 
o+hr component structures (Le., their datums) to the presently considered 
structure are called gb. At &Be points the negative of the reactions of the 
other components to external loads applied at any point k are introduced (Fig- 
ure A-8). The eubscrfpt b stands for boundary between coxnpozmnt &awtures. 
At such points, external forces P may be applied with tbe same sense 98 the 

4, 
correepandisg d 8 f O ~ t i O l m l  degree8 offreedom there. 

22 
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Figure A-8. Typical Load Points 6 

Beam 

P' ht 
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In W U I ~ ~ ~ ~ B ~ J T ,  the point nomenclature is as follows: 

= Pertains to deformation degree of freedom g at 
a point within or on boundary of tbe structure 
designated (c). 

= Pertains to deformation degree of freedom at 
points of statically determinate connsction of (c) 
with other component structures, dam of @) 
excluded. 

= plertains to deformation degrees of freedom at 
points of connecting redudant application on 
stntcture (c). 

(c) 
gi 

6 
(c) 

gt 
(e) 

Similarily, the corresponding force nomenclature substitutes h for g 

in the subscripts, other ifems being held equal so thact hi 

to forces corresponding in sense and location to their deformation counterpkt 

, % , \ pertain 
(c) (c) @) 

and &t , respectively. 
(c) 

& g i  '&b  
(c) (c) 

It should be noted that the symmetry of the influence coefficient matrix 

[Ygh] m. A.28) achtally Shows that g ;BQd h Can be used bbEh.lgd@. 

. Having dealt with the force and deformation designations for a corn- 
ponent structure, it wi l l  now + important to find a nomenclature for the general 
degrees of freedom and corresponding forces applied mywhere on a complex 
assembly of component structures. The reason is that we want to d e e c r b  tbs 
response of the complex structure to applied forces in the same way as the re- 
sponse of the component structure was described. This is to say, it is desirable to 
talkaboutthe degrees of freedom of points that are externally loadedandthe degrees 
of freedomof redundant interconnections separately. Therefore, the following 
definitions are given 

a. Deformation Designations of the Complex structure 

Tbs fdlowing subscripts describe the nature of subscripted 

n = Pertains to generalized deformation degrees of 
freedom anywhsre on the complex structure, ex- 
ternally loaded or at which ZleUpibiliQ influence, 
coeffic~nts are required. They include thoee 

24 



designated hi and l+, on the component structures. 
Excluded are those which correspond to redundant6 
existing at the boundaries between component struc- 
tures. 

s = Pertains to deformation degrees of freedom of the 
points at the redundant cuts existing between com- 
ponent strucbres. These degrees of freedom have 
a eubclass, designated by s which are those of the 

cut points externally loaded by forces of the same 
sense and location as the corresponding degree of 
freedom, or at which flexibility influence coeffi- 
cients a m  desired. 

P' 

. 
b. b u b  on the Complex Structure 

k, t 2: Pertains to forces corresponding in sense and location 
to their deformation counterparts n and s, respectively. 
This means that the forces designated by k are ex- 
teraal fomes and those designated by t are the re- 

to B , am externally applied at the location of inter- 

ing degree of freedom. Tbi r  positive direction is 
tbs same as tbatfor all other exte~rnallyappued loerde 
which have tbs same sense. 

dtlndants. % forces designated by tp, correspondiqg 

P 
COIUBcthg re&ndants with the se88 of tbe correspond- 

Using these definitions, a trangformation matrix can be oon- 
structed which will  express the forces applied to a compomnt atruch;lre in terms 
of the forces appued to the complex etructure. 

where hi axe points on tbs component structure and k are all tha points on the com- 
plex StFuCture where toms are applied, or for which influence coefficients are to 
be computed. 



Tbs loads on tbe bawdary, directly applied, for the structure I 
of F-A-10 are described bythe matrix [a,,,k] in terms ofthe lads {PJ , 
which is tbe oosaplete load matrhfor the complex stmctum. 

i 

C.iikl* = hW 0 0 0 1  ; i.-i") p3 

p4 

26 



For the structure II of Figure A-10: 

1 2 3 4  
1 1 0 0 0  [%*I 1 = 2 [o 1 0 O J  

Collectively we can thus write  pi] 
The forces P have three possible sou~oes as illustrated in hb 

Figure A-11. First, tbere are the reaction forces at % due to Unit values of 
forces anywbre at k wbich form the matrix [ 
forces at h,, due to unit values of forces of type t 

The third contribution to phb is the set of reaction forces at 4, due to unit values a€ 

redundants at t. The mgtrix expressing these relations is 

. Next, there am reactiOn 

These are given by [ i t J=  
%kl 
P. 

1. The loads 43f 

t 

on the structures from tbese three soulpces are the sum of their influences: 

I -  
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COUPLED STRUCTCRES 

n 
Datum for Structure 

'k 

FORCES AT 4, DUE TO LOADS Pk 
ON THE COUPLED STRUCTURE 

P 
XT - 

FORCES AT \ DUE TO 
REDUNDANTS Xt 

t P 
FORCES AT 5 DUE TO 

LOADS Pt 
P 

A-11. Loads on % Points of Coudled Component Structures 
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Finally there are forces at ht due to forces Ph applied on 2 

- side of the cut face that bebngs to the presently considered component structure, 
t -  

and those caused by unit values of the redundants between component structures. 
P 9 .  . r V I  \ 

The first are given by 1% i Pt ) and the second by ibh tJ {XA , as shown 
tP P t 

in Figge A-12. 

. -  
Figure A-12. Forces at ht-Due to Applied Loads and Redudants 

' y 6  7 

'0 01 5 1  

0 0  :! 0 0  

S I 6  ' 7  

5 6 7 8 9  

0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  

9 0 0 0 0 1  

I O O O O '  

h x 1 5 6 7 8 9  
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In summarizing these d e ~ c r i p t i o ~ ,  the loads located at vsrffous 

points of tbe complex structure, cut so that component structures are iuter- 
connected in a statically debrminat8 manner, cause forces on any pm%idar 

component s t r u m  (c) whicp can now be expressed in the matric equath 

-+t- - r- 
C 

c 

pt 
P --- :I' *t 



in which the [a] matrices are the forces caused by unit applied loade and b] 
81’8 forces dus to unit connecting wdundanta. More briefly slat& 

= Force on hi point due to unit load at k. 

= Form on I+, point due to unit load at k. 
%ik 

“.bk 
X t p  = Force 011 \ point due to unit load at tp. 

% t  = Forceat\pointduetounitloadont point. t P  P 

= Force on 4, poht due to unit connectiag re&nda.nt at t. 

= Force on \ point &e to unit connecting redudmt at t. 
“.bt 

Let the point be generalized so that 

i = Incationof n and sP points 

= Locationof k and t points 
P i 

that is, i and j designate aU points where flexibility influence coefficiente am 

Thenwecanlet 
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i 
8 
1 
I 
I 

and 

I 
8 

I 
1 
I 
I) 
II 

(A. 36) 

Where h now stand8 for the pinta hi, h,,, \ for which the flexibility matrix 

y 
on a parttcular CompOILBLLf atnadum (c) am: 

is known from the analysis of each component structun38. Tbsn the lrraAn 
gh 

(A. 3'1) 

2. The Work of Component Structures 

The development of a solution for component st~~ctures resulted in 
I- T 

a method for calculating tbe component structure flexibility ~natrfx [ %h 
according to E q .  (A.28). The matrix is fnitlally ca.lcula.ted in the desired 
arrangement or may be suitably w e d ,  BO that it is partitioned modhg 

to the point categorbe hi, \, 4 prevhu~ly defined. Actually this iS neCe88ELCg 

only for clarityof the derivation. Then thedeflections relative totbs components 
datum am: 
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or 

The work in tlae component structure is 

(A- 39) 

The work increment due to rigid body motion of the component struc- 

ture as it displaces due to motion of its datum is zero because the applied forcea 
and the datum reactions are in equilfbrium. Therefore, Eq. (A.39) gives o m  of 
the components of the total work in the complex structum, 

substituting Eq. (A.37) in Eqs. (A.38) and (A.39), there obtains 

(A-40) 



3. The work in the complex structure 

The work in the complex atnrcftrre is the sum ofthe works of tbs 
components, m given by Eq. (A.40). Thna, for (N) componemt structures: 

w 

N 

wint = L *(C) . _  
c=l 

r 1 

The external work of the complex is calculated as was done for the 
individual component strucbure. Assume that a flexibility matrix [a 3 of the 
complex structure exists.  he deflections of tbe external points i are: 

Similarly, the relative deflections of the cut points of statka.lly 

indeterminate interconnection are 
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Then let the 

I 6t3t 

The external work is 

we = [piixs] 
so 

NOW 

Let 

wtnt = we 

and 
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Substituting [A] and [B] in E q .  (A.41) and comparing with Eq. (A.44) show8 

or 

Let 

Then 

(A- 46) 

(A. 47) 

(A. 49) 

(A. 50) 

which shows that lyij J is, by definition, L e  flexibility influence coefficient 
mamx of the complepr structure. 



m 

T 
'sj = 'it 

C. SOLUTION SUMMARY 

1. ComplexStructuFe 

a. Coupling Redundants 

b. Forces Applied to Component Stmctues 

substitution ofEq .  (A.47) in (A.37) 

c. Displacements 

a7 . 

(A. 47) 



2. ComponentsIucture 

mbstibtipg {Ph} Of-. (A.51) h E q s .  (A.30), (A.31), and 
@.32), all internal forces in the comprmnt structures can be obtained. 

Ist 

-1 
xclh=-c PQ "pa 

(See Equation (A.30)) 

-1 
64 xtj = - 6, 

(see Esuatia (A.47)) 

c 

(See Equation (A. 37), (A. 47) ) 

or 

CA- 52) 

(A. ss) 

Then combining Eqs- (A. 52) and (A. 54), we obtain component re- due 
to unitapplied loade aa 

3 8 .  



Similarly combining Eqs. (A. 54) and (A. 55) results in i n & d  forces 
due to Unit applied load8 

fmj = fmh f41 (A. 57) 

and one obtains the following simplified relationsh5ps for tbs component atnac- 
ture: 

c o m g o a e n t ~ c t u r 8 ~  

Component Structure Internal Forces 

Component Structure Deflections 

(A. 5 9  

The deflection influence matrix 7 is obtained by choosing tboee c gll 
rows of [ Yij] for which i = g. The deflections could, of course, have been 

obtained by -&osing the appropriate values from the complex solution, Le., 
from {Ai], wherever i = g. Formally, the matrix ba]c"ld be obtaiwd 
by multiplying ygh by the unit load matrix €& . From Eq. [A. S), ' 
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D. SPECIALCASES 

1. statically Determinate coupling of StatiCalIy Indeterminate 
Components 

When no coupling redundants 5 exist, [B] does not exist, 88 can 
be sees by referring fa Eq. (A. 33). Followiug the demlopment of Eq. (A. 45) 

r -  

it becomes obviou that only the matrix Lbij 1 will  remain which is given by 

Tbe redundante in each component structure are obtaimdfrom 
Eq. (A. 58) 3n which 

so that 

txd=- pm] -l CCPh] [b] {pl) 
Tbe internal forces follow from Eq. (A. 59) in which 

= [fma3 [ %] 

so tllat 

(A. 62) 

-1 
(pm}’ pmh+mqcm cPh][.bj] { pj} 



2. Statically Determinate Components 

If the component structures are statically determinate, tbeir influence 
coefficient matrices 

because fl  does not exist. (S.D.C. means **statically determinate componelrt".) 

For tbe -e rea8ag, [ fmj ] ,= [ad] [ fh 
mq 

so that the i n t e d  forces are: 

(A. 65) 

~ 

I 
In case these component structures are coupled statically determinately, 

[fhj] =[%,3, asbefore, sothatinthiscase 

(A. 66) 

The complete solution of a complex structure consisting of statically 
indeterminate component structures that are attached to each other in a statically 

indeterminate manner has been faund and is summarized in Eqs. (A. 47), (A. SO), 

(A. 58) and (A. 59). Equations (A.47) and (A. 58) allow the calculation of the re- 
dundants of the system in two stages, first the coupling redundants and subse- 

quently the component structure reduudants. Equation (A.50) gives tbe displace- 
men& of the structure and Eq. (A. 59) gives the internal forces in the elements 
of each component structure. The maximum number of redundants at any stage 

of the computations can be taylored to suit by providing as many or as few cam- 
ponent structures as necessary to limit the size d required inversions, as may 
be seen from Eqs. (A.47) and (A. 58). It can also be seen that the matrix Y 
of each component structure can be obtained by treating it as a complex struchrre 
consisting of sub-components, each of which may or may not be redudant, as the 
configuration dictates. 

c J 

Finally, several special relationships were given for the cases in which 
the coupling of the components is statically determinate, or the components are 
statically determinate, or both. The method presented has, therefore, great u88- 

fulness in those applications in which the comple~~ structure ia extremely laqp 
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and can be clericalb handled most easily by assigning a component to each of 
several groups of personnel. Another advantage is that in a large system that 

may contain several hundred redudante, it will be possible to break the analysis 

physically into subdivisions so that no inversions of matrices larger than a eize 
for which good precision can be guaranteed will have to beperformed. 

Even if the structure is statically determinate, the methud presented 
will allow tbe calculation of the influence coefficient matrix of very large struc- 

tures in easy stages, as was sham in tbe final Eqs. (A. 64), (A. 65) and (A. 66) 
dealing with this degenerate case. 
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SECTION IV - SAMPLE PROBLEM 

The problem shown in Figure A-13 can be solved in the conventional way 

by using the theory described in Section IlI A. T h i ~  requires the use of three 
redundants. The alternate ooupling procedure ie ale0 ehown in ordsr to illus- 
trate the use of the theory of SectionIXI B. 

Figure A-13. Problem ElealizatiOn 



A. CONVENTIONAL MATRIC SOLUTION 
Figure A-14 shows two cantilever beams which are fixed in opposite walls, 

and a third beam which ia simply supported at two points on ea& of them beame. 
The loads are vertical concentrated forces. The illustration shows the beame 
in the idealized cut, s h t i d y  determinate configuration on which thie abalysfe 
would be based. All beame are assumed to be at the same level. 

t P g -  . 

Figure A-14. *Wut" Structure for Conventional Analysis 

The free bodies of the structural element8 are shown in Figure A-15. 

In the conventional dpis the structure ie cut at three points, giving a 
single set of three FeQndants. The methods of SectionIIIA are applied to- 
tain a solution. 
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I 
I 
I 
I 

2. Element Fleudbilitv Matr ices  
Element (II): LIS 

@) - L = 5  

y=- L - 5  
EA 

(c) L = 4  

L 
y = E A = 4  

Q3 

L3 Y1;3m= 9 

L = 2  

L = l  

L3 1 
3EI= 5 

E A = 1  

E A = 1  

EA91 

EI-1 

L2 y12= y21=2m f 4.5 

L yzz=n = 3 

E1 = 1 
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9 
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B. SOLUTION THROUGH COUPLING OF COMPONENT STRUCTURES 
Thie solution is obtained by applying the methods of Section m B. 

Structure I is a once-redundant component structure. The aseemblage of the 
three component structures hae statically determinate interoonnection when 
cuts are made at points 2 and 3. The coupling matrices [A)& p]for the cut 

structure d Figure A-16 are shown on page 51. 

Figure A-16. Illustrative Problem . 

The component internal force matrices are given first: 
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Component IU 

k = 3  k = 5  

The Coupling Matrices [AI and b1 
i- -I 

(Refer to Fig. A-16) 
CBht 1 

Component 
No. 

k 
1 2  3 4  5 6  1 2 

x1 x2 Force 
T i s  j' t t j' j' j' P P 

2 1 
3 f  

1 - 0  9 1 

0 

0 

0 

0 

0 

0 

0 

. _ _  
1 - - 2  

3 3 0 

0 
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0 

0 
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ht 
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ht 

ht 

h. 
J 

ht 
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II 0 0 0 1 

1 0 0 0 

0 -1 0 0 0 0 

m 1 2 
3 F - 8 - 1  9 

1 2 
,5 5. 
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The Component Element Flexibility Matrices 

These matrices correspond to the diagonal partitions of ylm, with parti- 
tioning between 6 and 7,and between 13 and 14, because the -t of 4 

and m indices correapond~ to that of the components. Thue 

- 
1 
3 
- 

8 
3 
2 

- 

9 
9 

9 1 4 
9 4.5 
4.5 3 

2 

2 
9 4.5 

4.5 3 
9 4.1 

4.5 3 

4.5 1 
4.5 3J - 
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APPENDIX A - PROOF OF EQUATION @.aq 

To prove: 

Let r ~ i  

Then 

[LT] [ e  - dTyd] [L ] = 0 

but L 4 0  

T therefore c = d  y d  

or 
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APPENDIX B - AXlS SYSTEM TRANSFORMATIONS OF FORCE 
AND DEFORMATION VECTORS 

suppose a t3tructura.I element to exist with 0- principal axes xl ,  
ya, z", oriented arb- with respect to a common cartesian mombmte 

system as shown in the fgllowing sketch. 
2 

I 
2 

X 

h-bitrary Location of Triple Prime Axis System with 
Respect to Common x, y, z System 

Let it be so oriented that the direction cosines of the XI axis are given by 
I x, mx, and nx, respectively, being the cosines of the angles between the xlaxis 

and the x, y,and e axes. similarly 4 , m and n are tb direction cosines 04 
the angles between the ym axis and the x, y, and e axes, respectively. The , 

subscripts e refer to similar Quantities pertaining to location of the z axis. 
Thus it c a n ' s a e ~  be 88811 that the t I ' a n e f O R ! & h  Of foFceS 

tern, x", y'", t'" to the oommosl Carteem system ie obtained by the motrir 

multiP- 

Y y '  Y 

ools SXiS -8- 

? 
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Methods for obtainirrp the direction cosines are s t r a i g h t f o d  and follow 
from the calculation of unit vectors along cbosen body axes. It can be shown 

that this transformation ma- is o r t h o n o d ,  so tbat its inverse is equal 

to its transpose. 

h order to ensure the orthogonality ofthe T &m, the following 
orthogo- conditions must be met: 

.- where *l; i = j  
'g a 0 ;  i t j  
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APPENDIX C -_  - EXTERNAL TO LOCAL INTERNAL 
FORCE- TRANSFORMATION 

1. Transformation from Common into hcal Element Axis System 

In the calculation of the influence coefficient matrix of a complex struc- 

ture it will be necessary to trsnsform forces given in the common x, y, z 
coordinate system into tbose acting along the principal aies of the element. 
Suppose six for- are givem at the end of the element shown in the following 
sketch. 

_.---- 4’ t 
X 

Prismatic Arbitrarily Iocated Element SubMcted to End Forces 

56 



I 
1 
I 
I 
8 
8 

we arrange the foroee.khfd are in the body axis eyetem into two triplets of 
forces and momenta. The resulting trarmeformation yields the formula: 

t 

I [TI * i I [.PI 

- 1  
L O 1  I ' E T I 1  

where[ T] is obtained as previously discussed. 

F; = rnomentabout~~axis  

F'W = torqueaimutymaxie 

F ; ~  = momentaboutzaaxis 

Fxm = transverse shear in x axis direction 

F w = axial force in yw axis direction 

F Z m  = shear force in z "' axis direction 

Y 

Y 

2. Transformation of Externally Applied Loads into Internal Element Forces 

The forces at the ends of structural elements that are caused by exter- 
nally applied loads anywhere on the complex structure must be calculated M) 

that the internal work in the elements can be calculated. The use of internal 
work in the application of the principle of virtual work for the solution of corn- 
plex redundant structures was shown in Section III. The internal form influ- 
ence matrices occur in two types. One is the matrix whose elem- a m  the 

element forces due to unit values of the applied loads; the other tJrpe give8 the 
element forces due to unit values of the redundants. 
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The determination of these matrices obviously requires that the struc- 

ture be cut until a stable, statically determinate structure remains. Then the 
internal forces can be obtained from'the equations a€ static equilibrium, which 
involve only the geometry. 

The cutting should be done 80 that, if possible, the Fedundante wi l l  have 
the least effect on the internal forcee in the structum. 

Let [ Q[ ] = Influence matrix giving internal forces due to unit val- 

[ B  3 = ~nfluence lllELfifx giving internal for- titm to unit val~ea 

of applied load 

of redundant forces acting sim- on bath sides of 
onecut 

Then the internal forces are: 

where Ph = external forces at h 

X = redundant forces at q 
Q 



8 
i 

, 

These are the desired internal force6 in the principal axb eyetem of the strue= 
turd elem&. AB an example, coneMer tb force transformation for a rod 
element 

I 
1 
8 
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